
HangmanGame.java

1 package Hangman;
2
3 import java.util.ArrayList;
7
8
9

10 /**
11 * This is the HangmanGame "Controller" class that launches the game and takes user input,
12 * and by reading the user input of continuing the game or not, this class also allows users
13 * to run multiple rounds of word guessing in a single run.
14 * Besides, I wrote two versions in one class, because traditional version is
15 * obviously the special version of evil version that contains only one word in
16 * the game set. Therefore, only the game controller class will control
17 * the version that user is playing.
18 * @author Kevin Long
19 *
20 */
21 public class HangmanGame {
22
23 // The Game class is only responsible for generating available arraylist set for guessing
24 ArrayList<String> original = new ArrayList<String>();
25
26 // This variable controls the word length that computer randomly generates for user
27 int available;
28
29 // This variable controls the states of gaming continuing or not
30 boolean conti = true;
31
32 // Instantiate this class
33 public HangmanGame(ArrayList<String> s){
34 this.original = s;
35 }
36
37
38 /**
39 * This static method loops through the available word list and return the maximum length

of the world in the
40 * world list, so that the random method do not generate word length that is too long and

there is not match in
41 * the list.
42 * @param words
43 * @return
44 */
45 public static int availableLength(ArrayList<String> words) {
46
47 // Set the initial length of longest word as 0 and update the value
48 int maxLength = 0;
49
50 // Loop through the word list
51 for (String word: words) {
52 if (word.length() > maxLength) {
53
54 // Once there is any word that has a length over maxLength, update the value

of the variable
55 maxLength = word.length();
56 }
57 }

Page 1

HangmanGame.java

58 return maxLength;
59 }
60
61
62 /**
63 * This method loops through the available word list and return the ArrayList<String> word

list where all words are
64 * exactly the same length as given int length.
65 * @param length
66 * @return
67 */
68 public ArrayList<String> gameSet(int length) {
69
70 // Create a new ArrayList and populate it with words that has exactly the same length

as variable length
71 ArrayList<String> list = new ArrayList<String>();
72
73
74 for(String word: this.original) {
75 if (word.length() == length) {
76
77
78 // Use list.add() method
79 list.add(word);
80 }
81 }
82
83
84 return list;
85 }
86
87
88 public static void main(String[] args) {
89 // TODO Auto-generated method stub
90
91
92 // Initialize the txt that we will use
93 System.out.println("Welcome to HangmanGame! ");
94 String filename = "words.txt";
95
96 // Create new file reader instance to manipulate the txt file and return the "pure"

word list
97 HangmanFileReader fr = new HangmanFileReader(filename);
98
99 // Get clean word list with no leading or trailing whitespaces

100 ArrayList<String> lines = fr.getCleanContext();
101 System.out.println("System have read the file: " + filename);
102
103 // Create a new HangmanParsing object to parse the lines and return the pure word list
104 HangmanParsing rq = new HangmanParsing(lines);
105 ArrayList<String> s = rq.matchCleaning();
106
107 // Generate the available length
108 int len = HangmanGame.availableLength(s);
109
110 // Use the pure word list to create a HangmanGame object
111 HangmanGame newGame = new HangmanGame(s);

Page 2

HangmanGame.java

112
113 // Initialize several variables that we will use in latter parts
114 Random rand = new Random();
115 String pattern = "[a-z]+";
116
117 // Notice the user when creating the pure word list successfully
118 System.out.println("System created a pure guess-able word list.");
119
120 // Initialize the scanner onbject
121 Scanner scanner = new Scanner(System.in);
122
123
124 // When the conti is true, continue the game
125 while(newGame.conti) {
126
127
128 // Intialize the word list length for creating Hangman Object, use rand.nextInt(i)

+ 1 to get exactly the word length that is used
129 int i = rand.nextInt(len) + 1;
130
131 // Create the gameSet for the game
132 ArrayList<String> game = newGame.gameSet(i);
133
134
135 // If the computer generates the length that has no words in it, repeat the

process and generate a new GameSet
136 while(game.size() == 0) {
137 i = rand.nextInt(len) + 1;
138 game = newGame.gameSet(i);
139 }
140
141 // Setting Game mode, if j is 0, then we are playing traditional hangmang. If j is

1, then we are playing an evil hangman
142 int j = rand.nextInt(2);
143
144 // If the game is traditional, select a random words from gameset arrylist and

process (Actually, traditional hangman game is a special version of evil hangman game)
145 if(j == 0) {
146 int inde = rand.nextInt(game.size());
147 ArrayList<String> game1 = new ArrayList<String>();
148 game1.add(game.get(inde));
149 game = game1;
150 }
151
152 // Use game(ArrayList<String>) and i(int, represents the length of the word

selected) to create a Hangman object
153 Hangman newHangman = new Hangman(game, i);
154
155 // Print the Rule of the hangman Game
156 System.out.println("Welcome to Hangman Game!");
157 System.out.println(" ");
158 System.out.println("You'll play against computer who randomly choose a word(or

word group of a specific length;");
159 System.out.println("You'll immediately know how many characters are in the

word(s), but you won't know you're guessing");
160 System.out.println("a word or a dynamic word group;(You'll get to know it

afterwards, though!)");

Page 3

HangmanGame.java

161 System.out.println("All characters undiscovered are marked as '-'.");
162 System.out.println("If you guess the character right, it will automatically appear

on a location (or more)");
163 System.out.println("Now try youre best and hit all of them as soon as

possible! ");
164 System.out.println(" ");
165 System.out.println("------------------------------------Instruction---------------

--");
166 System.out.println("Please input a single lowercase character, or put the

character in string beginning position, such as a, ab, ass");
167 System.out.println("--

--");
168
169 // Print the length out at the start of the game and ask the user to input
170 System.out.println("Guess a letter");
171
172 System.out.println(newHangman.print());
173
174 // Record the very first string printed
175 //String s1 = newHangman.print();
176
177 // Make a judgement to see if the user has guessed all the characters correctly
178 while(!newHangman.guessAll()) {
179
180 // Get user guess
181 String guess = scanner.next();
182
183 // Compare the user input with regex pattern and try to get a lowercase

character at first position
184 boolean isMatch = Pattern.matches(pattern, "" + guess.charAt(0));
185 // If user didn't input a lowercae character at the first position of the

string, pop up the error message and asks the user to input again
186 while(!isMatch) {
187 System.out.println("You ara typing un-recongized guess format, make sure

you input lowercase character in the beginning");
188 System.out.println("Guess a letter");
189 guess = scanner.next();
190 isMatch = Pattern.matches(pattern, "" + ""+guess.charAt(0));
191 }
192
193 // System.out.println("Game size: "+newHangman.testSet.size());
194
195 // Print if users have guessed a character that was guessed
196 newHangman.remindRepeatance(guess.charAt(0));
197
198 // Implement the updateMap method and update the frequency Map
199 newHangman.updateMap(guess.charAt(0));
200
201
202 // Compare the frequency Map and update the gameset if the group is with any

position of the word.
203 newHangman.updatePrint(guess.charAt(0));
204
205 // Iterate until all characters that has the maximum frequency are replaced in

other two map
206 // while (!s1.equals(newHangman.print())){
207 // s1 = newHangman.print();

Page 4

HangmanGame.java

208 // newHangman.updateArray(guess.charAt(0));
209 // }
210
211 // Initialize frequency map
212 newHangman.reInitialize();
213
214 // Print another guess requirement for users
215 System.out.println("Guess a letter");
216
217 // Print the printMap out to assit user guessing more characters
218 System.out.println(newHangman.print());
219
220
221 }
222
223 // Tell User the game version that they are playing
224 if (j == 0) {
225 System.out.println("You've just finished a traditional version hangman

game!");
226 } else {
227 System.out.println("You've just finihsed an evil version hangman game!");
228 }
229
230 // When all positions are been updated as "has guessd", end this round
231 System.out.println("You have guessed all words. This is the end of this around.

Input Y if you want to start another round, or it ends.");
232
233 // Asks the user input and look at if user want to keep on or want to stop
234 String keep = scanner.next();
235
236 // If user want to keep the game, start the loop again
237 if(!keep.equals("Y")) {
238 newGame.conti = false;
239 }
240 }
241
242 // If the user don't want to stard another round, end the game
243 scanner.close();
244 }
245
246 }
247

Page 5

