GOAL

Generate a new grid on which each pixel's value indicates, as a percentage, how much of that pixel's country is occupied by whichever type of landscape occupies the greatest amount of territory within that country.

Understanding of the Goal

Requirement	Translation in GIS				
"Indicate as a percentage"	Value equals to a number, which is a percentage				
"landscape occupies the greatest amount of territory"	Only the percent of largest landscape within a country is given as the raster value				
"whichever type"	The specific type of the greatest landscape is not what the new raster must contain				
"each pixel has a country's percentage"	Each country gives all its pixels the same raster value-final step of zonal statistics should be zoned by countries.				

Reverse Thinking Mode – Basic Steps

The target grid

Step4: Zonal Statistics-Mean

Grid of "1"s-"0"s for calculation

Step3: Reclassify

Grid that defines the pixels of largest land and other

Step2: Raster Calculator

Grid that each territory pixels has the largest land value

• Step1: Zonal Statistics-Majority

Basic Layers-Countries & Ecozones

Environment Preparation

🛠 Environment Settings × ¥ Workspace ➢ Output Coordinates * Processing Extent Extent ~ 3 Same as layer countries Top 9378725.612620 Left Right 2053903.846871 13435903.846871 Bottom -1061274.387380

Before we do the major steps in ArcMap, we should set "Environment Settings-Processing Extent-Same as layer countries", so that we will not miss any content of the countries.

Final Step of Solution- Core Formula

Based on the understanding of the goals, the core step of generating the grid must be zonal statistics.

 $Largest Percent = \frac{All Largest Land Area Pixels}{Territory Pixels} = \frac{All the "1"s}{Territory Pixels}$

We just need to find a raster that has all the largest land pixels within each country equal to 1, while all other pixels are equal to zero (which will not influence the result) before we make a zonal statistics that will generate the target grid we need.

Step 1: Zonal Statistics-Majority

Input raster or feature zone data
countries
Zone field
VALUE
Input value raster
ecozones
Output raster
C:\Users\Kevin Long\Documents\Penn\18 Spring\LAR
Statistics type (optional)
MAJORITY

At first, we need to give the value of largest landscape within a country to all pixels within that country.

(Warning: that this zonal step might leave some countries to null if no value pixels appears within its territory, which will cause trouble in final step.)

Step 2: Raster Calculator

Map Algebra expression			
Layers and variables			
full_eco	7	8	9
countries	4	5	6
ecozones	1	2	3
)	

("major" - "full_eco") == 0

Before Step 2 - Give all NoData pixels in ecozones a zero value.

p Algebra expression							
Layers and variables							
> major > countries	7	8	9	1		1=	&
ecozones	4	5	6	*	>	>=	T
	1	2	3	-	<	<=	^
)		+	()	~

Reason: This step will make sure that all pixels of countries will have a value in ecozone raster, which avoid the null result in further step.

Formula:

Con(IsNull("econzones"),0,"ecozones")

Then we need to calculate and make a reclassification that separate largest landscape from other type

The Formula is:

("major" - "full_eco") == 0

The result grid should have 2 values:

- "1"s- Largest landscape pixels
- "0"s- Other landscape pixels

We save it as "major_loc" raster.

Since the layer has already have all its value set to 1 and 0, which is exactly what we want in final step, we can jump step 3 of reclassify.

_
↓
Jan Start

Step 3: Zonal Statistics – Mean

Zonal Statistics

	countries
5	Zone field
	VALUE
	Input value raster
]	major_loc
(Dutput raster
ĺ	C:\Users\Kevin Long\Documents\Penn\18 Spring\LAF
2.4	Statistics type (optional)
ĺ	MEAN

We keep using countries as the zoned layer, since final raster should answer the question based on country level.

However, the generated map shows there are some "0" pixels. This means the proportion of largest landscape in some countries is 0 percent, which is wrong intuitively.

Since I have explained in step 1 that the "NoData" pixels in landscape will make some countries "null", this will make all

the pixels 0 in step 2, thus causing some 0 pixels in step 3.

Step 4: Discussion

We need to know if there is indeed some countries that have all its territory null in ecozones before we decide to exclude them or not. Here is a list of steps that can find all "0" pixels in percentage raster of step3:

a. Raster Calculator: 🔨 Raster Calculator

Layers and variables	^	
◇null_out		7
percent_goal		~
◇ major_loc		4
♦ full_eco		
🔷 major		1
🔷 countries		_
ecozones	~	

Formula:

SetNull ("percent_goa" != 0, "percent_goal")

This will identify all the 0 pixels and make null all other pixels

b.Zoom to Layer:

Right click the layer you just generated. This will display all 0 pixels within your screen

	nt co	
0	阍	Сору
. □ null_o	×	Remove
🗄 🗌 perce		Open Attribute Table
🗄 🗌 major		Joins and Relates
⊞ □ full_ec		Zoom To Layer
	8	Zogen Ta Males Multila
	.	Zoom To Layer Visi Selected layer
		Dat
		Edit Features
	\diamond	Save As Layer File
8		Create Layer Package
	er e	Properties

c.Raster to Polygon :

Do this step for countries raster.

(Remember unchecking the "Simplify polygon"!!!!)

Kaster to Polygon

Input raster

countries

Field (optional)

COUNTRY

Output polygon features

C:\Users\Kevin Long\Documents\Penn\18 Sprin

Simplify polygons (optional)

Kefan Long Assignment-4

d. Look at Polygon Attribute:

Select all the polygons within your screen, and right click to check the attribute.

File Edit View Bo	okmarks Insert Selection Geoprocessing	Table			
🗅 🧀 🖬 🖨 🔸 🏥	🛍 🗙 🤊 🗠 🕁 🗸 1:4, 000, 000) 🗉 📲	🔹 🍢 🌄 🖾	🤩 🗙 i 🖷 🖷 🍕	×
🔍 🔍 🖑 🥥 💥 🖸	💠 🕅 - 🖸 🖡 🗿 🥖 🖽 🗒 Netwo	name_cou	ntry		
IND AND IND IND I GOD		FID	Shape *	Id gridcode	COUNTRY
해 백 27 전 61 (1) (1)		3697	Polygon	3698	8 Maldives
able Of Contents	Ψ ×	3700	Polygon	3701	18 Maldives
		3707	Polygon	3708	18 Maldives
S 🗧 🐸 🧁 🖂		3705	Polygon	3709	18 Maldives
🗄 🚄 Lavers		3710	Polygon	3711	8 Maldives
		3714	Polygon	3715	8 Maldives
E Co	DV .	3/16	Polygon	3/1/	18 Maidives
		3720	Polygon	3/21	8 Maidives
🗉 🗌 cour 🗙 Ren	move	3730	Polygon	3/31	18 Maldives
(III) On	en Attribute Table	3/40	Polygon	3/90	o Maldives
		3/03	Polygon	3/04	0 Maldives
🗉 🗹 unco Joi	n Onen Attailaute Table	2705	Polygon	2706	0 Maldives
0	open Attribute Table	2705	Polygon	2702	8 Maldives
E 🗌 null 🖉 200	Open this layer's attribute	3795	Polygon	3794	8 Maldives
Zoo	b table. Shortcut: CTRL +	3805	Polygon	3803	8 Waldives
	double-click laver name OR	3811	Polygon	3812	8 Maldiver
🕀 🗌 majc 🛛 🗤		3814	Polygon	3815	8 Maldives
🗉 🗌 full e 🛛 Use	erice + 1.	3817	Polygon	3818	8 Maldives
I D main		3815	Polygon	3819	8 Maldives
Sel	ection 🔸	3838	Polygon	3839	8 Maldives
Cour	al Fastures	3866	Polygon	3867	8 Maldives
∃ ecoz Lat	Jei reatures	3867	Polygon	3868	8 Maldives
Edi	t Features	3870	Polygon	3871	8 Maldives
100		3871	Polygon	3872	8 Maldives
The Co	nvert Labels to Annotation	3883	Polygon	3884	8 Maldives
9- Co	nvert Features to Graphics	3894	Polygon	3895	8 Maldives
		3910	Polygon	3911	8 Maldives
Col	nvert Symbology to Representation	3916	Polygon	3917	18 Maldives
Det	h	3923	Polygon	3924	8 Maldives
Da	· .	3927	Polygon	3928	8 Maldives
🔷 Sav	ve As Layer File	3930	Polygon	3931	8 Maldives
		3960	Polygon	3961	8 Maldives
Cre	eate Layer Package	3967	Polygon	3968	8 Maldives
Pro Pro	operties	3971	Polygon	39/2	8 Maldives
		3977	Polygon	38/8	S Maidives
		3985	Polygon	3990	S Maldives
		3993	Polygon	3994	S Maidives
		3994	Polygon	3995	O MRIGIVES
		3996	Polygon	3991	O MRIGIVES
11		_ Jumi			

See? All the pixels are from one country! Maldives!

(This is a very tricky but lucky step. If we have more than a country in the screen, we will also do "raster to polygon" to raster in step a, and then select all country polygons than intersect with this "0" polygon. This will involve the vector knowledge, so I try not to do it in this semester.)

Finding the special "null-ecozone-type" country, we can exclude it and generate the final map we need to answer the goal question.

e. Raster Calculator:

Formula:

SetNull ("percent_goa" == 0, "percent_goal")

This step will set all the 0 pixels null and keeps all other pixels the same value.

We can se from the legend that the most uniformed country has 98.4 percent of its territory the same type of landscape. The lowest only has 8.33 percent of its territory the same type of landscape. (This map is based on current ecozones raster and did not take other types of landscape into consideration. Nor did this map regard all unclear types of landscape as a single type, because this will make Maldives 100 percent uniformed in its territory landscape. If we can find an ecozone raster that overlay perfectly with territory map, we will get the most correct answer.)