
CIT 590: Spring 2019
Homework 9 – Traditional & Evil Hangman

For HW9, you may work as a group (no more than 2 students). Note: As an alternative
to this assigned homework, you may have already defined and been approved for an
optional final project of your own design.

This is a 2-part homework assignment.

Part 1: Traditional Hangman

Traditional Hangman

Hangman is a 2-player word-guessing game generally played by having one player think

of a word and the other player trying to guess that word letter by letter. Read more

information about the game here.

Similar to Battleship, we want you to program a computer versus user version of the

game. The computer will pick a random word from a dictionary that we will provide to

you in a file. Note that we want you to use this dictionary file and only this dictionary

file. It makes it easier for our testing.

• Represent the word to guess by using a row of underscores, representing each

letter of the word (e.g., ‘dog’ would be shown to the user as _ _ _).

• The user guesses one letter at a time. Every correct letter that they guess should

be shown in its correct location(s). Every guess that is incorrect will be shown in

a list right underneath the word.

For example, below is an example of a reasonable interface. Feel free to make your

program do exactly this or make it look even fancier!

https://en.wikipedia.org/wiki/Hangman_(game)

Your Task

1. Read and parse the provided dictionary .txt file in Java, cleaning it up.

The word list file (words.txt) that we have provided to you in the canvas folder contains

a number of words that do not really work for hangman. As part of your program we

want you to read that file in and ensure that the computer never chooses a word that

contains any of the following:

a) Upper case letters (Zambia, Shakespearean, Berlin, Mars, Navajo, deWeert)

b) Abbreviations - designated by a ‘.’ (mrs., govt., dr., lb., adj.)

c) An apostrophe (you’re, couldn’t, won’t, it’s)

d) A hyphen (user-generated, custom-built, mother-in-law, editor-in-chief)

e) Compound words - words with spaces (post office, real estate, attorney general)

f) A digit (2nd, 3D, 12-sided)

NOTE: For your convenience, we are also providing a file (words_clean.txt), which only

has “approved” words. It is a very short file, compared to the full words.txt. This should

allow you to work on and quickly test out other parts of the assignment even if you

haven’t cleaned up the full dictionary.

2. Design the traditional hangman program

We are not going to provide you with a specific design for this homework. However,

here are some hints about the design and implementation:

a) You need a class that reads and parses the dictionary file, removes unacceptable

words, and keeps track of the number of guesses and mistakes.

b) There should be a HangmanGame “controller” class that launches the game and

takes user input.

c) We do want you to handle cases like the user guessing the same letter twice. In

such cases, be nice to the user and give them a message. Do not penalize them.

Last, but not least, if you are not given a design to stick to, it might be in your best

interest to start with a piece of paper and lay out what your classes and methods will

be. In other words, do not dive into Eclipse and expect things to work out without some

forethought.

Part 2: Evil Hangman

Evil Hangman

The evil version of this game basically exploits the computer’s ability to store a large

amount of information. In the traditional version of the game, the computer has to stick

to the original word as the user guesses. In the evil version, the computer keeps

changing the word in order to make the user’s task harder.

The algorithm that drives Evil Hangman is fairly straightforward. The computer begins by

maintaining a list of all words of a particular length. Whenever the player guesses, the

computer partitions the words into "word families" based on the positions of the

guessed letters in the words of a particular length. For example, if the full word list is

ECHO, HEAL, BELT, HELLO, and HAIRCUT and the player guesses the letter 'E', then there

would be four word families:

E - - -, containing ECHO

- E - -, containing HEAL and BELT

- E - - -, containing HELLO

- - - - - - -, containing HAIRCUT

Once the words are divided into these groups, the computer picks the largest of the

groups (with the most words) to use as its remaining word list. By doing so, it gives itself

the maximum chance to dodge the user’s guesses.

It then reveals the letters in the positions indicated by the word family. In this case, the

computer would pick the family - E - - (because it has 2 words and the other families

only have 1 word each) and would reveal an E in the second position of the word.

The computer cannot reverse its decision once it has determined which letters to

reveal. In the example above, if the user guesses ‘L’ next, the computer must pick a

word from its word list that has four letters and contains an E in the second position.

The computer cannot switch and pick the word HELLO. Since both HEAL and BELT have

an L, the computer must pick one of these two words and reveal the L in the correct

position.

Your Task

Add the evil hangman functionality (as described above) to your traditional hangman

program. When you launch the game from the HangmanGame class, the computer

should decide which version of the game to play with the user. Your goal as the

programmer is to ensure that the user does not realize that the computer is being evil.

Do not print anything that might let the user discover this. Everything should look

exactly the same to the user when playing evil hangman as it does when playing

traditional hangman. At the end of the game, if/when the user wins, you can tell them

which version of the game they were playing.

From a programming perspective you want evil hangman and traditional hangman to

share as much code as possible. We want you to think hard about how you can

accomplish this. The answer lies within the scope of the object-oriented concepts we

have covered in this course.

For example, you might have an abstract class Hangman, with a subclass

HangmanTraditional for the traditional version of the game and a subclass

HangmanEvil for the evil version of the game.

Testing

Regardless of your design, we expect you to write unit tests for every public method.

The only public methods that you can leave untested are those that perform file I/O,

and simple getters and setters. You should keep the file I/O in as few methods as

possible.

In order to perform tests, please use the smaller list of words (words_clean.txt). Reading

in the larger text file (words.txt) in order to run unit tests is going to be inefficient.

Feel free to create additional versions of the dictionary .txt file for testing, but please be

sure to include them with your homework submission.

Javadocs

Add Javadocs for all methods and variables. Create API (Application Programming

Interface) documentation for your entire program. This can be extremely helpful for

other programmers reading/running your code.

What to Submit

Please submit your entire Java project in a .zip file. Make sure it includes your “src”
folder with all of your code, both traditional and evil hangman, and a separate folder
with all of your generated Javadoc HTML files.

If you’re working as part of a team, only one student from your team needs to submit
the .zip file. Name it with your pennkey(s), separated by an underscore. For example, if
Brandon was working with Yang, their submission would be lbrandon_liuya.zip.

Also include the members of your team as part of the @author tag in the Javadocs for
your HangmanGame “controller” class.

Evaluation
  

The TAs will grade you out of 40 pts:

• Code writing, functionality, and design (20 pts)

o Does traditional hangman work as expected?

o Does evil hangman work as expected?

o Does the computer choose which version of the game to play and can the

user tell?

o Did you make good design decisions about code re-use?

▪ How much code is being shared between traditional and evil

hangman?

▪ How is this code sharing being achieved in your design?

o Does the code take too long to run? (10 seconds would be too long!)

• Loading, parsing, and navigating dictionary (10 pts)

o Did you keep file I/O in as few methods as possible?

o Did you accurately clean the dictionary file based on the provided

guidelines?

o What data structure(s) did you use?

• Unit testing (5 pts)

o Did you write unit tests for every public method (excluding methods that

perform file I/O and simple getters and setters)?

• Style & Javadocs (5 pts)

o Adding Javadocs to all methods and variables, and comments to all non-

trivial code

o Generate HTML files from the Javadocs in your code using Eclipse

